3
A B C D E F G H I K L M N O P R S T Y Z
А Б В Г Д Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
ОБ ОГ ОП ОТ
ОБР ОБТ ОБШ

обшивка

оболочка, образующая внешнюю поверхность летательного аппарата. В современных летательных аппаратах используется жёсткая «работающая» О., воспринимающая одновременно внешние аэродинамические нагрузки, нагрузки в виде изгибающих и крутящих моментов, а также перерезывающих сил, действующих на каркас летательного аппарата (рис. 1). Распространённая ранее «мягкая» несиловая О. из ткани или фанеры используется редко (в основном в конструкциях лёгких спортивных или тренировочных самолётов и планеров, имеющих малую скорость полёта). О. крыла и оперения в зависимости от выбранного типа конструкции может быть тонкой, подкреплённой стрингерным набором, или толстой, выполненной из монолитной прессованной либо фрезерованной панели (рис. 2), или трёхслойной (рис. 3). Во всех случаях О. должна быть жёсткой и сохранять заданную форму. Преждевременное образование складок и волн на О. ведёт к значительному увеличению аэродинамического сопротивления в полёте. Под действием изгибающего момента верхняя О. крыла нагружена регулярно повторяющимися сжимающими усилиями, а нижняя — растягивающими. В связи с этим для верхних «сжатых» О. (панелей) используются высокопрочные материалы, хорошо работающие на сжатие, а для нижних «растянутых» панелей — материалы, имеющие высокие усталостные характеристики. Для сверхзвуковых летательных аппаратов материал О. (панелей) выбирается с учётом аэродинамического нагревания в полёте. В местах нагревания устанавливается О. из теплостойких алюминиевых материалов, титана или стали, а в остальных частях — из обычных алюминиевых сплавов. Для повышения живучести конструкции ширина листов О. в сечении крыла выбирается из условия допускаемого разрушения одного из листов без потери общей прочности крыла. В высокоресурсных конструкциях по длине крыла стремятся максимально сократить число стыков, имеющих значительно меньший ресурс в сравнении с основным полотном О. Масса О. крыла составляет около 25—50% его общей массы, поэтому с целью улучшения весовых характеристик производится механическое или химическое профилирование листов и панелей по толщине в допустимых прочностью пределах. Толщина О. фюзеляжа выбирается в зависимости от действующей нагрузки. При этом учитывается, что верхняя зона О. воспринимает растягивающие усилия всей площадью О. и стрингеров, а нижняя зона — сжимающие нагрузки только частью О., присоединённой к стрингерам, длиной l = 30{{}} (где {{}} — толщина О.). В герметичном фюзеляже (см. Гермокабина) толщина О. выбирается с учётом внутреннего избыточного давления. Для обеспечения необходимого ресурса гермокабины используются алюминиевые листы, прессованные и фрезерованные панели повышенной чистоты из высокоресурсного сплава. Для повышения живучести конструкции фюзеляжа на О. высокоресурсных гермокабин часто применяются ленты-стопперы, являющиеся остановителями трещин (рис. 4). Ленты устанавливаются по всему периметру фюзеляжа (под шпангоутами или между ними).
 на заглавную 10 самых Обратная связь  к началу страницы
© 2008 Территория Хобби XHTML | CSS Powered by Glossword 1.8.11