3
A B C D E F G H I K L M N O P R S T Y Z
А Б В Г Д Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
УГ УД УП УС УТ УХ
УДА УДЕ УДЛ

Ударная волна

распространяющаяся со сверхзвуковой скоростью в сжимаемой среде тонкая переходная область, в которой происходит резкое увеличение давления р, плотности {{ρ}}, энтропии, скорости среды и др. газодинамических переменных. В механике сплошных сред эту переходную область обычно можно считать поверхностью гидродинамического разрыва, при переходе через которую скачкообразно изменяются р, {{ρ}} и т. д. Газодинамические переменные по обе стороны У. в. связаны уравнениями, выражающими сохранения законы: {{ρ}}1({{υ}}n1 ― U) = {{ρ}}2({{υ}}n2 ― U), {{υτ}}1 = {{υτ}}2; p1 + {{ρ}}1({{υ}}n1 ― U)2 = p2 + {{ρ}}2({{υ}}n2 ― U)2; {}, где i — удельная энтальпия, U — скорость перемещения У. в., {{υ}}n и {{υτ}} — нормальная и касательная к У. в. составляющие вектора скорости среды; индексы 1 и 2 относятся к состоянию среды перед и за У. в. В общем случае {{ρ}}, {{υ}}, U и т. д. — функции координат точки У. в. и времени. Представление У. в. поверхностью разрыва является некоторой идеализацией, оправданной для большинства задач аэродинамики, так как толщина области, в которой проявляется действие вязкости и теплопроводности и устанавливается термодинамическое равновесие по поступательным степеням свободы и в которой происходит резкое изменение р, {{ρ}} и т. д., по порядку величины равна длине свободного пробега молекул газа l, что в механике сплошных сред является пренебрежимо малой величиной по сравнению с характерным линейным размером явления L. При больших скоростях распространения У. в. (для воздуха более 2—3 км/с) в газе протекают неравновесные физико-химические процессы (возбуждение колебаний молекул, химические реакции, ионизация и т. д.) и структура У. в. более сложна. В этом случае за фронтом У. в. образуется релаксационная область толщиной d>>l, в которой происходит установление термодинамического равновесия, сопровождающееся дальнейшим изменением р, {{ρ}} и т. д. (Эта релаксационная область толщиной d, примыкающая к поверхности разрыва — фронту У. в., часто включается в понятие У. в.). В гиперзвуковой аэродинамике возможны случаи как dL (см. Неравновесное течение). В отечественной литературе У. в., неподвижная в выбранной системе координат, обычно называется скачком уплотнения (СУ). СУ, плоскость которого перпендикулярна к направлению движения газа, называется прямым, а СУ, плоскость которого образует с направлением движения газа угол, отличный от прямого, — косым. Уравнения прямого СУ в совершенном газе имеют вид: {}; {}; {}; где Т — термодинамическая температура среды, М — Маха число, {{γ}} — показатель адиабаты. Уравнения, описывающие косой СУ, можно получить из уравнений прямого СУ, если в них заменить {{υ}} на {{υ}}n, М на Мn и добавить условие {{υτ}}1 = {{υτ}}2; {{υ}}n {{υτ}} — соответственно нормальная и касательная к СУ составляющие скорости. Для анализа течений за косым СУ широко используется так называемая ударная поляра — кривая в плоскости годографа скоростей (см. Годографа метод), устанавливающая связь между компонентами скорости до и после СУ, углом отклонения потока и углом наклона СУ. СУ произвольной формы на каждом небольшом участке можно рассматривать как прямой или косой, поэтому соотношения для прямого и косого СУ применимы и для криволинейных СУ. У. в. (СУ) образуются при обтекании тел сверхзвуковым и трансзвуковым потоками газа, при сверхзвуковом движении заострённых и затупленных тел и т. п. Возникновение У. в. приводит к различного рода потерям, обусловленным необратимым переходом механической энергии в тепловую и ростом энтропии; появление У. в. сопровождается появлением волнового сопротивления и, следовательно, ростом сопротивления аэродинамического, звуковым ударом и т. п. При взаимодействии У. в. с границами раздела сред, с волнами разрежения и т. д. может происходить преломление, отражение
 на заглавную 10 самых Обратная связь  к началу страницы
© 2008 Территория Хобби XHTML | CSS Powered by Glossword 1.8.11