3
A B C D E F G H I K L M N O P R S T Y Z
А Б В Г Д Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
СА СВ СЕ СИ СК СЛ СН СО СП СР СТ СУ
СТА СТЕ СТО СТР СТУ

стелс

техника (английское Stealth technology, от stealth — скрытность) — термин, используемый с середины 70 х гг. для обозначения средств и методов уменьшения радиолокационной (РЛ), ИК, оптической и акустической заметности военной техники. Применение «С.» т. предусматривается практически во всех крупных американских и западноевропейских программах создания новых военных самолётов. В начальный период развития авиации предпринимались попытки уменьшить визуальную заметность летательных аппаратов применением прозрачных обшивок, но камуфляжная окраска оказалась более приемлемой. В 60 х гг. в США были разработаны лёгкие малошумные самолёты воздушного наблюдения. Однако основным современным средством дальнего обнаружения летательных аппаратов в системах ПВО являются радиолокационные станции, и наибольшее внимание уделяется уменьшению радиолокационной заметности летательных аппаратов. Впервые средства уменьшения радиолокационной заметности были использованы фирмой «Локхид» в конце 50 х гг. при проектировании самолёта A-12 и на его основе разведчика SR-71. Широкомасштабное применение «С.» т. было предпринято фирмами «Локхид» и «Нортроп» в конце 70 х—80 х гг. и определило облик разработанных ими ударного самолёта F-117A (см. рис.) и стратегического бомбардировщика B-2 (см. рис. при статье «Нортроп»). Известны три пути снижения радиолокационной заметности: применение малоотражающих форм, радиопоглощающих материалов (РПМ) и усовершенствованного бортового радиоэлектронного оборудования. К малоотражающим относятся компоновки летательного аппарата с плавным сопряжением элементов конструкции (в частности схема «летающее крыло»), с определённой ориентацией плоских поверхностей (например, «фасеточная» поверхность) и кромок для уменьшения числа максимумов эффективной поверхности рассеяния (ЭПР) и их вывода из сектора наиболее вероятного облучения, с заделанными щелями на внешней поверхности, с внутренним размещением двигателей, с тоннельными или утопленными воздухозаборниками или воздухозаборниками с экранами и изогнутыми каналами для предотвращения радиолокационного облучения компрессора двигателя, с внутренним или конформным размещением подвесного вооружения. Существует большое многообразие РПМ, обеспечивающих поглощение, рассеяние и интерференцию энергии электромагнитных волн. На летательных аппаратах возможно применение ферромагнитных, резонансных, широкополосных и интерференционных (электрический экран) радиопоглошающих покрытий. Используются конструкционные РПМ и радиопоглощающие конструкции. Сложную проблему представляет задача подавления излучений бортовых радиоэлектронных систем вследствие того, что любое радиоэлектронное устройство является источником излучения и любая антенна переизлучает часть падающей на неё энергии. Решение заключается в максимальном использовании пассивных оптикоэлектронных обзорно-прицельных систем и неизлучающих навигационных систем (например, астроинерциальных систем), радиолокационных станций с малой вероятностью перехвата сигналов (с пониженной мощностью и временем излучения, изменяемой рабочей частотой, малым уровнем боковых лепестков диаграммы направленности антенны и т. д.), в уменьшении числа бортовых антенн, улучшении обработки данных, автоматизации обнаружения и классификации угрожающих объектов противника, усовершенствовании средств РЭБ. ИК диапазон является единственным (помимо радиолокационного), в котором в современных условиях возможно надёжное обнаружение целей за пределами визуальной видимости, и снижение ИК заметности представляет собой второе по важности направление «С.» т. Различают по меньшей мере три источника теплового излучения летательного аппарата: элементы двигателя, выхлопные газы двигателя и подвергшийся аэродинамическому нагреванию планёр. ИК заметность снижается экранированием горячих компонентов двигателя (например, применением плоского сопла, уменьшающего сектор обзора внутреннего канала двигателя с задней полусферы), охлаждением и изменением направления выхода газов двигателя, применением присадок к топливу для уменьшения интенсивности ИК излучения или изменения его спектра. Для предотвращения аэродинамического нагревания желателен полёт летательного аппарата с дозвуковой скоростью. Рекомендуется установка систем кондиционирования с замкнутым циклом для предотвращения выделения тепла наружу. Считается, что «С.» т. является наиболее революционным усовершенствованием в области военной авиации после появления реактивных двигателей и стреловидного крыла. Однако следует иметь в виду, что дальность радиолокационного обнаружения цели пропорциональна корню четвёртой степени из величины ЭПР цели, и даже большое снижение ЭПР даёт сравнительно малое уменьшение дальности обнаружения. Кроме того, использование малоотражающих форм часто требует компромиссов в области аэродинамики летательных аппаратов. Общий недостаток РПМ — относительно невысокая диапазонность, что обусловливает необходимость многослойных покрытий и приводит к увеличению массы летательного аппарата. Исследуются различные системы обнаружения малозаметных летательных аппаратов, в том числе нерадиолокационные (акустические, основанные на регистрации космических лучей и магнитного поля и т. д.). Но основным средством дальнего обнаружения в будущем останутся, как полагают, радиолокационные станции. Изучаются радиолокационные станции следующих типов: сверхширокополосные, метрового, дециметрового и миллиметрового диапазона и загоризонтные, многопозиционные, космического и аэростатного базирования и т. д.
Источник: Лит.: Палий А. И., Радиоэлектронная борьба, 2 изд., М., 1989., М. А. Левин.
 на заглавную 10 самых Обратная связь  к началу страницы
© 2008 Территория Хобби XHTML | CSS Powered by Glossword 1.8.11