3
A B C D E F G H I K L M N O P R S T Y Z
А Б В Г Д Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
ПА ПВ ПЕ ПИ ПЛ ПО ПР ПУ
ПРЕ ПРИ ПРО ПРЯ

прямоточный воздушно-реактивный двигатель

(ПВРД) — бескомпрессорный воздушно-реактивный двигатель, в котором сжатие воздуха производится в воздухозаборнике за счёт кинетической энергии набегающего потока атмосферного воздуха (схему ПВРД см. в статье Воздушно-реактивный двигатель, рис. 1). ПВРД нашли применение в основном на беспилотных летательных аппаратах, используемых при больших сверхзвуковых скоростях полёта (разведчики, ракеты класса «воздух — земля», зенитные управляемые ракеты и другие). Летательный аппарат с ПВРД нуждается в стартовом двигателе-ускорителе, разгоняющем летательный аппарат до скорости включения ПВРД, соответствующей Маха числу полёта Мнач = 1,5—2. В качестве стартовых используются ракетные двигатели (ракетные двигатели твёрдого топлива или жидкостные ракетные двигатели). ПВРД входит в конструкцию большинства комбинированных двигателей. Максимальная скорость при использовании ПВРД на керосине соответствует М{{∞ ≈}} 5—6. Вследствие ограничений по работоспособности и низкой эффективности всех типов газотурбинных двигателей при М{{∞}}{{ > }}3,5 ПВРД и гиперзвуковой ПВРД оказываются единственными типами воздушно-реактивных двигателей для получения высоких сверхзвуковых и гиперзвуковых скоростей полёта. Первоначально (50 е гг.) ПВРД устанавливались вне фюзеляжа летательного аппарата на пилонах или применялась компоновка двигатель — фюзеляж с лобовым (рис. 1, а и б), а позже кольцевым (рис. 1, в) воздухозаборниками. Первая ступень этих летательных аппаратов имела ракетные ускорители (ракетные двигатели твёрдого топлива или жидкостные ракетные двигатели) и отбрасывалась при достижении Мнач. С середины 60 х гг. начали разрабатываться интегральные (малообъёмные) компоновки, объединяющие в корпусе ракеты ПВРД и стартовый ракетный двигатель твёрдого топлива (рис. 1, г и д и рис. 2). Уменьшение объёма ракеты достигается также использованием в ПВРД тяжёлых топлив с высокой объёмной теплотой сгорания (40—50 МДж/м3), например, тяжёлых углеводородов или борсодержащих топлив (жидких, суспензий и твёрдых). Применяются также твёрдые топлива с металлами (магний, алюминий). Тяговые характеристики ПВРД выражаются безразмерным коэффициентом тяги Cp = P/(qF), где Р — тяга; q = QнV2{{∞}}/2 — скоростной напор; Qн — плотность атмосферного воздуха; V{{∞}} — скорость полёта; F — площадь миделя (при М{{∞}} = 2—5 Cp max{{≈}}2,5-1). Экономичность ПВРД характеризуется удельным импульсом Iуд = P/Gт, где Gт — секундный расход топлива (при М{{∞}} = 2—5 Iуд = 20—19 кН*с/кг, топливо — керосин). Эти значения в несколько раз превышают значения Iуд жидкостного ракетного двигателя и ракетного двигателя твёрдого топлива. Высокая экономичность, возможность регулирования расхода топлива (тяги), проходных сечений реактивного сопла и воздухозаборника, свойство авторегулируемости тяги при изменении давления атмосферного воздуха по высоте полёта позволяют получить гибкие характеристики ПВРД, хорошо приспособляемые к потребностям летательных аппаратов различного назначения. Историческая справка. Идея ПВРД предложена Р. Лореном (Франция, 1913). Теория ПВРД разработана Б. С. Стечкиным (1929). Первые разработки ПВРД выполнены во Франции (Р. Ледюк, 1933—1938) и СССР (И. А. Меркулов, 1939). Широкие разработки ПВРД начались в послевоенное время в СССР (М. М. Бондарюк и другие), США (Р. Марквардт), Великобритании и других странах. 70—80-е гг. характеризуются главным образом разработками малообъёмных ракет с ПВРД. Первая в мире малообъёмная ракета с ПВРД твёрдого топлива создана в СССР (1965). См. также Гиперзвуковой прямоточный воздушно-реактивный двигатель.
Источник: Лит.: Бондарюк М. М., Ильяшенко С. М., Прямоточные воздушно-реактивные двигатели, М., 1958.
 на заглавную 10 самых Обратная связь  к началу страницы
© 2008 Территория Хобби XHTML | CSS Powered by Glossword 1.8.11